Abstract

The dynamic seeding and glaciation of a mixed-phase cloud by ice crystals injected from above at Ny Ålesund, Svalbard, Norway is described using continuous lidar measurements and thermodynamic data. Glaciation of this cloud was caused by ice crystal growth and sedimentation due to the preferential differences in saturation vapor pressure over ice versus liquid water and riming. The lidar data suggest that precipitation reached the ground for nearly 4 h as a result. The symbiosis between ice and liquid water hydrometeor presence in the polar troposphere is unique. Thermal perturbations and airmass fluctuations influence microphysical cloud characteristics and radiative balance, which makes the otherwise pristine region sensitive to lower-latitude anthropogenic and biogenic influences and a focal point for observing indirect effects and their influence on climate change. The development of lidar technologies capable of continuous and autonomous measurements is yielding important datasets to study unique atmospheric phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.