Abstract
While it was identified that the growth of any connected Hopf algebras is either a positive integer or infinite, we have yet to determine the Gelfand–Kirillov (GK) dimension of a given connected Hopf algebra. We use the notion of anti-cocommutative elements introduced in Wang, D. G., Zhang, J. J., Zhuang, G. (2013). Coassociative lie algebras. Glasgow Math. J. 55(A):195–215 to analyze the structure of connected Hopf algebras generated by anti-cocommutative elements and compute the GK dimension of said algebras. Additionally, we apply these results to compare global dimension of connected Hopf algebras and the dimension of their corresponding Lie algebras of primitive elements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.