Abstract
We investigate when a skew polynomial extension T=R[x;σ,δ] of a Hopf algebra R admits a Hopf algebra structure, substantially generalising a theorem of Panov. When this construction is applied iteratively in characteristic 0 one obtains a large family of connected noetherian Hopf algebras of finite Gelfand–Kirillov dimension, including for example all enveloping algebras of finite dimensional solvable Lie algebras and all coordinate rings of unipotent groups. The properties of these Hopf algebras are investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.