Abstract
I study the effect of task difficulty on workers’ effort. I find that task difficulty has an inverse-U effect on effort and that this effect is quantitatively large, especially when compared to the effect of conditional monetary rewards. Difficulty acts as a mediator of monetary rewards: conditional rewards are most effective at the intermediate or high levels of difficulty. The inverse-U pattern of effort response to difficulty is inconsistent with many popular models in the literature, including the Expected Utility models with the additively separable cost of effort. I propose an alternative mechanism for the observed behavior based on non-linear probability weighting. I structurally estimate the proposed model and find that it successfully captures the behavioral patterns observed in the data. I discuss the implications of my findings for the design of optimal incentive schemes for workers and for the models of effort provision.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have