Abstract

Self-organized anodic titania (TiO2) nanotube arrays are an interesting model anode material for use in Li-ion batteries owing to their excellent rate capability, their cycling stability and their enhanced safety compared to graphite. A composite material where carbothermally treated conductive TiO2nanotubes are used as support for a thin silicon film has been shown to have the additional advantage of high lithium storage capacity. This article presents a detailed comparison of the structure, surface and bulk morphology of self-organized conductive TiO2nanotube arrays, with and without silicon coating, using a combination of X-ray diffraction, X-ray reflectivity, grazing-incidence small-angle X-ray scattering (GISAXS) and time-of-flight grazing-incidence small-angle neutron scattering (TOF-GISANS) techniques. X-ray diffraction shows that the nanotubes crystallize in the anatase structure with a preferred (004) orientation. GISAXS and TOF-GISANS are used to study the morphology of the nanotube arrays, delivering values for the inner nanotube radius and intertubular distances with high statistical relevance because of the large probed volume. The analyses reveal the distinct signatures of a prominent lateral correlation of the TiO2nanotubes of ∼94 nm and a nanotube radius of ∼46 nm. The porosity averaged over the entire film using TOF-GISANS is 46%. The inner nanotube radius is reduced to half (∼23 nm) through the silicon coating, but the prominent lateral structure is preserved. Such in-depth morphological investigations over large sample volumes are useful towards development of more efficient battery electrode morphologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.