Abstract
Molecular dynamics simulations of microscopic phenomena are limited by the short integration time steps which are required for numerical stability but which limit the practically achievable simulation time scales. Collective variable (CV) enhanced sampling techniques apply biases to predefined collective coordinates to promote barrier crossing, phase space exploration, and sampling of rare events. The efficacy of these techniques is contingent on the selection of good CVs correlated with the molecular motions governing the long-time dynamical evolution of the system. In this work, we introduce Girsanov Reweighting Enhanced Sampling Technique (GREST) as an adaptive sampling scheme that interleaves rounds of data-driven slow CV discovery and enhanced sampling along these coordinates. Since slow CVs are inherently dynamical quantities, a key ingredient in our approach is the use of both thermodynamic and dynamical Girsanov reweighting corrections for rigorous estimation of slow CVs from biased simulation data. We demonstrate our approach on a toy 1D 4-well potential, a simple biomolecular system alanine dipeptide, and the Trp-Leu-Ala-Leu-Leu (WLALL) pentapeptide. In each case GREST learns appropriate slow CVs and drives sampling of all thermally accessible metastable states starting from zero prior knowledge of the system. We make GREST accessible to the community via a publicly available open source Python package.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have