Abstract

BackgroundHigher levels of glucocorticoids (GCs), and impaired regulation of the hypothalamic-pituitary-adrenal (HPA) axis may cause or exacerbate the occurrence of metabolic and psychiatric disorders. It has been reported that ginseng saponin extract (GSE) has an inhibitory effect on the hyperactivity of the HPA axis induced by stresses and increased corticosterone level induced by intraperitoneal injection of adrenocorticotrophic hormone (ACTH) in mice. However, the molecular mechanisms by which GSE and its active ginsenosides inhibit corticosterone secretion remain elusive. Main methodsY1 mouse adrenocortical cells were treated with ACTH for up to 60 min to establish a cell model of corticosterone secretion. After treatment with different concentrations of GSE or ginsenoside monomers for 24 h prior to the addition of ACTH, analyses of cAMP content, PKA activity, and the levels of steroidogenesis regulators, melanocortin-2 receptor (MC2R), and melanocortin-2 receptor accessory protein (MRAP) in ACTH-induced Y1 cells were performed. ResultsWe demonstrated that GSE inhibits ACTH-stimulated corticosterone production in Y1 cells by inhibiting factors critical for steroid synthesis. Ginsenoside Rd, an active ingredient of GSE, inhibits corticosterone secretion in the cells and impedes ACTH-induced corticosterone biosynthesis through down-regulation of proteins in the cAMP/PKA/CREB signaling pathway. In addition, Western blot and qPCR analyses showed that ginsenoside Rd attenuated the induction of MC2R and MRAP by ACTH. ConclusionOur findings indicate that ginsenoside Rd inhibits ACTH-induced corticosterone production through blockading the MC2R-cAMP/PKA/CREB pathway in adrenocortical cells. Overall, this mechanism may represent an important therapeutic option for the treatment of stress-related disorders, further supporting the pharmacological benefits of ginseng.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.