Abstract
BackgroundGinsenosides have antioxidant and anti-inflammatory features. This study aimed to evaluate the biologic effects of ginsenoside Rb2 pretreatment on ventilator-induced lung injury (VILI) in rats.MethodsRats were divided into four groups with 12 rats per group: control; low tidal volume (TV), TV of 6 mL/kg, VILI, TV of 20 mL/kg, positive end-expiratory pressure of 5 cm H2O, and respiratory rate of 60 breaths per minute for 3 h at an inspiratory oxygen fraction of 0.21; and ginsenosides, treated the same as the VILI group but with 20 mg/kg intraperitoneal ginsenoside pretreatment. Morphology was observed with a microscope to confirm the VILI model. Wet-to-dry weight ratios, protein concentrations, and pro-inflammatory cytokines in the bronchoalveolar lavage fluid were measured. RNA sequencing of the lung tissues was conducted to analyze gene expression.ResultsHigh TV histologically induced VILI with alveolar edema and infiltration of inflammatory cells. Ginsenosides pretreatment significantly reduced the histologic lung injury score compared to the VILI group. Wet-to-dry weight ratios, malondialdehyde, and TNF-α in bronchoalveolar lavage fluid were significantly higher in the VILI group and ginsenoside pretreatment mitigated these effects. In the immunohistochemistry assay, ginsenoside pretreatment attenuated the TNF-α upregulation induced by VILI. We identified 823 genes differentially presented in the VILI group compared to the control group. Of the 823 genes, only 13 genes (Arrdc2, Cygb, Exnef, Lcn2, Mroh7, Nsf, Rexo2, Srp9, Tead3, Ephb6, Mvd, Sytl4, and Ube2l6) recovered to control levels in the ginsenoside group.ConclusionsGinsenosides inhibited the inflammatory and oxidative stress response in VILI. Further studies are required on the 13 genes, including LCN2.
Highlights
Lung injury score The lung injury scores were significantly higher in the low tidal volume (TV), ventilator-induced lung injury (VILI), and ginsenoside Rb2 (GnRb2) group compared to the control group, respectively
GnRb2 pretreatment significantly attenuated the increased lung injury score induced by VILI (p < 0.001) (Fig. 1e)
In conclusion, our study showed that the GnRb2 pretreatment attenuates VILI, including inflammation and pulmonary edema
Summary
This study aimed to evaluate the biologic effects of ginsenoside Rb2 pretreatment on ventilator-induced lung injury (VILI) in rats. Most of the biological functions of Panax ginseng come from ginsenosides [5]. No related study has showed the effects of GnRb2 pretreatment on VILI. Considering the anti-inflammatory and antioxidant function, we hypothesized that GnRb2 will have protective effects in VILI. To verify this hypothesis, we ventilated rats with high tidal volume (TV) and evaluated the effects of GnRb2 in attenuating VILI in rats. We conducted a gene expression profiling analysis of the lung tissues to understand the underlying mechanism and identify potential therapeutic targets
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.