Abstract

BackgroundSympathetic nerve activity (SNA) plays a central role in the pathogenesis of several diseases such as sepsis and chronic kidney disease (CKD). Activation of microglia in the paraventricular nucleus of the hypothalamus (PVN) has been implicated in SNA. The mechanisms responsible for the adverse prognosis observed in sepsis associated with CKD remain to be determined. Therefore, we aimed to clarify the impact of increased SNA resulting from microglial activation on hemodynamics and organ damage in sepsis associated with CKD.Methods and resultsIn protocol 1, male Sprague–Dawley rats underwent either nephrectomy (Nx) or sham surgery followed by cecal ligation and puncture (CLP) or sham surgery. After CLP, Nx-CLP rats exhibited decreased blood pressure, increased heart rate, elevated serum creatinine and bilirubin levels, and decreased platelet count compared to Nx-Sham rats. Heart rate variability analysis revealed an increased low to high frequency (LF/HF) ratio in Nx-CLP rats, indicating increased SNA. Nx-CLP rats also had higher creatinine and bilirubin levels and lower platelet counts than sham-CLP rats after CLP. In protocol 2, Nx-CLP rats were divided into two subgroups: one received minocycline, an inhibitor of microglial activation, while the other received artificial cerebrospinal fluid (CSF) intracerebroventricularly via an osmotic minipump. The minocycline-treated group (Nx-mino-CLP) showed attenuated hypotensive and increased heart rate responses compared to the CSF-treated group (Nx-CSF-CLP), and the LF/HF ratio was also decreased. Echocardiography showed larger left ventricular dimensions and inferior vena cava in the Nx-mino-CLP group. In addition, creatinine and bilirubin levels were lower and platelet counts were higher in the Nx-mino-CLP group compared to the Nx-CSF-CLP group.ConclusionsIn septic rats with concomitant CKD, SNA was significantly enhanced and organ dysfunction was increased. It has been suggested that the mechanism of exacerbated organ dysfunction in these models may involve abnormal systemic hemodynamics, possibly triggered by activation of the central sympathetic nervous system through activation of microglia in the PVN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.