Abstract

The paper analyses univariate autoregressive AR(p) models with tightness prior. The framework of the model is the conjugate normal linear model where the prior distribution is assumed to be a random walk process. The deviation from the prior distribution is measured by the tightness (hyper-) parameter λ. It is shown how the estimation of the starting values can be incorporated into the Gibbs sampling scheme. We demonstrate this approach with simulated and economic time series. It is found that for typical economic sample size the sampling fluctuations influence the posterior distribution considerably and informative prior distributions seem to be useful, especially for prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.