Abstract

We report on design, fabrication by molecular beam epitaxy, and photoluminescence (PL) studies of GaAs/AlGaAs/ZnSe/ZnCdMnSe double quantum wells (QWs), where resonant electronic coupling occurs through a heterovalent interface. The resonant conditions achieved in the properly designed sample facilitate penetration of the electron wave function from the nonmagnetic GaAs QW into the diluted magnetic semiconductor ZnCdMnSe QW. It results in the sign reversal and drastic increase of a GaAs QW excitonic g factor. The exciton spin splitting observed in the magneto-PL spectra is in general agreement with the calculation performed within the envelope function approximation, taking into account both the inter-well electron coupling and Brillouin-like paramagnetic behavior of the Mn2+ ions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.