Abstract

We consider a rotating Bose-Einstein condensate confined in combined harmonic and quartic traps, following recent experiments [V. Bretin, S. Stock, Y. Seurin, and J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)]. We investigate numerically the behavior of the wave function which solves the three-dimensional Gross Pitaevskii equation and analyze in detail the structure of vortices. For a quartic-plus-harmonic potential, as the angular velocity increases, the vortex lattice evolves into a vortex array with hole. The merging of vortices into the hole is highly three dimensional, starting from the top and bottom of the condensate to reach the center. We also investigate the case of a quartic-minus-harmonic potential, not covered by experiments or previous numerical works. For intermediate repulsive potentials, we show that the transition to a vortex array with hole takes place for lower angular velocities, when the lattice is made up of a small number of vortices. For the strong repulsive case, a transition from a giant vortex to a hole with a circle of vortices around is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call