Abstract

Mixed convection heat transfer in a lid-driven cavity with a rotating cylinder was analyzed numerically for two important parameters - Richardson number, the non-dimensional angular velocity of the cylinder, and the direction of rotation using the commercial software, ADINA. The results from these simulations were validated using an open-source spectral element code, Nek5000. The results of this investigation were presented in terms of streamlines, isotherms, and average and local Nusselt numbers. The present results illustrated that the average Nusselt number was found to depend on the direction of the angular velocity. The average Nusselt number increased with an increase in the clockwise angular velocity of the cylinder for various Richardson numbers. However, it decreased with an increase in the counterclockwise until reached a critical velocity where average Nusselt number increased with an increase in the angular velocity. This study illustrated that the maximum heat transfer can be achieved when placing a rotating cylinder inside a cavity compared with non-rotating cylinder.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call