Abstract
Mastering dissipation in graphene-based nanostructures is still the major challenge in most fundamental and technological exploitations of these ultimate mechanical nanoresonators. Although high quality factors have been measured for carbon nanotubes (>106) and graphene (>105) at cryogenic temperatures, room-temperature values are orders of magnitude lower (≃102). We present here a controlled quality factor increase of up to ×103 for these basic carbon nanostructures when externally stressed like a guitar string. Quantitative agreement is found with theory attributing this decrease in dissipation to the decrease in viscoelastic losses inside the material, an effect enhanced by tunable "soft clamping". Quality factors exceeding 25 000 for SWCNTs and 5000 for graphene were obtained on several samples, reaching the limits of the graphene material itself. The combination of ultralow size and mass with high quality factors opens new perspectives for atomically localized force sensing and quantum computing as the coherence time exceeds state-of-the-art cryogenic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.