Abstract

Magnetization dynamics is of great interest in the aim of using spins in nanoscale information technology, which ultimately should reach the atomic size. In the present work, we explore magnetization and spin dynamics in atomic ferromagnetic contacts both experimentally and theoretically. We demonstrate that domain walls induce a giant rectification effect as the DC voltages measured across the contacts are greatly enhanced by the presence of a domain wall. This effect is understood using multiscale dynamic simulations showing that the atomic sized walls oscillate, both in position and size, when submitted to the radio-frequency excitation. This leads to an increase by three orders of magnitude due to the large atomic scale spin excursion at resonance in the presence of an atomic sized domain wall. Beside the interesting amplified rectification, this could also be used as a unique tool to measure dynamical properties at the atomic scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.