Abstract
Understanding the coupling between one-dimensional (1D) materials and their protective materials is essential for developing nanodevices. Herein, we investigate the effect of the size, chirality, and type of nanotubes [such as carbon/boron nitride nanotubes (CNTs/BNNTs)] on the atomic and electronic structures of confined Te chains using density functional theory. We find that the optimal configurations of the Te chains confined in CNTs/BNNTs depend strongly on the size of the nanotubes but weakly on their chirality and type. Furthermore, the Te@BNNTs exhibit giant Rashba splitting with a Rashba constant of up to 2.65 eV Å, while the Te@CNTs show no splitting. This is mainly due to the large bandgap of the BNNTs, as well as the enhanced symmetry breaking of the Te chains when confined. Our findings provide a basis for the design of nano spin devices through protective materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.