Abstract

The mid-infrared (MIR), far-infrared (FIR), and terahertz (THz) frequencies are the least developed parts of the electromagnetic spectrum for applications. Traditional semiconductor technologies like laser diodes and photodetectors are successful in the visible light range but are still confronted with great challenges when extended into the MIR/FIR/THz range. In this paper, we demonstrate that topological insulators (TIs), especially those with Mexican-hat band structure (MHBS), provide a route for overcoming these challenges. The optical responses of MHBS TIs can be 1-2 orders of magnitude larger than that of normal semiconductors at the optical transition edge. We explore the databases of topological materials and discover a number of MHBS TIs whose bandgaps lie between 0.05 and 0.5 eV and possess giant gains (absorption coefficients) on the order of 104-105 cm-1 at the transition edge. These findings may significantly boost potential MIR/FIR/THz applications such as photon sources, detectors, ultrafast electro-optical devices, and quantum information technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.