Abstract

Through investigating the spin-dependent charging energy of nanoscale systems, we introduce a new concept of intrinsic molecular magnetocapacitance (MC). In molecules and nanosize quantum dots that undergo a spin state transition, the MC can be as high as 12%. First-principles calculations demonstrate that in a number of nanoscale systems, the quantum capacitance is highly sensitive to the system spin and charge states. In single molecule junctions, one can exploit molecular MC through the Coulomb blockade effect by modulating the bias voltage and applying an external magnetic field, which turns electron conductance on or off. Detailed analysis on molecular nanomagnet Mn(3)O(sao)(3)(-)(O(2)CMe)(H(2)O)(py)(3) shows a 6% MC with a switching field of ~40 T. Its MC can be further enhanced to 9.6% by placing the molecule above a dielectric surface, opening up new avenues for novel nanoscale materials design. Under current experimental conditions, the predicted molecular MC effect can be probed without substantial difficulties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.