Abstract

Magnetic transitions in UNiGa were found to cause pronounced anomalies in temperature and magnetic-field dependencies of the electrical resistivity. The resistivity values are drastically reduced by the field induced transition from an antiferromagnetic to a ferromagnetic phase. The giant magnetoresistance (as large as Δρ/ρ=−87% at T=1.2 K for i∥c) observed in UNiGa is typical for materials characterized by a strong coupling of conduction electrons with highly correlated f electrons. The observed anisotropy of transport properties is closely connected with the strong uniaxial magnetic anisotropy of this compound.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.