Abstract

We show theoretically that the low-field carrier mobility in silicon nanowires can be greatly enhanced by embedding the nanowires within a hard material such as diamond. The electron mobility in the cylindrical silicon nanowires with 4-nm diameter, which are coated with diamond, is 2 orders of magnitude higher at 10 K and a factor of 2 higher at room temperature than the mobility in a free-standing silicon nanowire. The importance of this result for the downscaled architectures and possible silicon-carbon nanoelectronic devices is augmented by an extra benefit of diamond, a superior heat conductor, for thermal management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call