Abstract
Ghrelin plays important roles in glucose metabolism, appetite, and body weight regulation, and recent evidence suggests ghrelin prevents excessive anxiety under conditions of chronic stress. We used ghrelin knockout (ghr-/-) mice to examine the role of endogenous ghrelin in anxious behavior and hypothalamic-pituitary-adrenal axis (HPA) responses to acute stress. Ghr-/- mice are more anxious after acute restraint stress, compared with wild-type (WT) mice, with three independent behavioral tests. Acute restraint stress exacerbated neuronal activation in the hypothalamic paraventricular nucleus and medial nucleus of the amygdala in ghr-/- mice compared with WT, and exogenous ghrelin reversed this effect. Acute stress increased neuronal activation in the centrally projecting Edinger-Westphal nucleus in WT but not ghr-/- mice. Ghr-/- mice exhibited a lower corticosterone response after stress, suggesting dysfunctional glucocorticoid negative feedback in the absence of ghrelin. We found no differences in dexamethasone-induced Fos expression between ghr-/- and WT mice, suggesting central feedback was not impaired. Adrenocorticotropic hormone replacement elevated plasma corticosterone in ghr-/-, compared with WT mice, indicating increased adrenal sensitivity. The adrenocorticotropic hormone response to acute stress was significantly reduced in ghr-/- mice, compared with control subjects. Pro-opiomelanocortin anterior pituitary cells express significant growth hormone secretagogue receptor. Ghrelin reduces anxiety after acute stress by stimulating the HPA axis at the level of the anterior pituitary. A novel neuronal growth hormone secretagogue receptor circuit involving urocortin 1 neurons in the centrally projecting Edinger-Westphal nucleus promotes an appropriate stress response. Thus, ghrelin regulates acute stress and offers potential therapeutic efficacy in human mood and stress disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.