Abstract

Cotton (Gossypium hirsutum) fibers are elongated single cells that rapidly accumulate cellulose during secondary cell wall (SCW) thickening, which requires cellulose synthase complex (CSC) activity. Here, we describe the CSC-interacting factor CASPARIAN STRIP MEMBRANE DOMAIN-LIKE1 (GhCASPL1), which contributes to SCW thickening by influencing CSC stability on the plasma membrane. GhCASPL1 is preferentially expressed in fiber cells during SCW biosynthesis and encodes a MARVEL domain protein. The ghcaspl1 ghcaspl2 mutant exhibited reduced plant height and produced mature fibers with fewer natural twists, lower tensile strength, and a thinner SCW compared to the wild type. Similarly, the Arabidopsis (Arabidopsis thaliana) caspl1 caspl2 double mutant showed a lower cellulose content and thinner cell walls in the stem vasculature than the wild type but normal plant morphology. Introducing the cotton gene GhCASPL1 successfully restored the reduced cellulose content of the Arabidopsis caspl1 caspl2 mutant. Detergent treatments, ultracentrifugation assays, and enzymatic assays showed that the CSC in the ghcaspl1 ghcaspl2 double mutant showed reduced membrane binding and decreased enzyme activity compared to the wild type. GhCASPL1 binds strongly to phosphatidic acid (PA), which is present in much higher amounts in thickening fiber cells compared to ovules and leaves. Mutating the PA-binding site in GhCASPL1 resulted in the loss of its colocalization with GhCesA8, and it failed to localize to the plasma membrane. PA may alter membrane structure to facilitate protein-protein interactions, suggesting that GhCASPL1 and PA collaboratively stabilize the CSC. Our findings shed light on CASPL functions and the molecular machinery behind SCW biosynthesis in cotton fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.