Abstract

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, lacking effective targeted therapies, and whose underlying mechanisms are still unclear. The gene coding for Gametogenetin-binding protein (GGNBP2), also known as Zinc Finger Protein 403 (ZNF403), is located on chromosome 17q12-q23, a region known as a breast cancer susceptibility locus. We have previously reported that GGNBP2 functions as a tumor suppressor in estrogen receptor-positive breast cancer. The aim of this study was to evaluate the role and mechanisms of GGNBP2 in TNBC. The effect of GGNBP2 on TNBC aggressiveness was investigated both in vitro and in vivo. The protein and mRNA expression levels were analyzed by western blotting and reverse transcription quantitative polymerase chain reaction, respectively. Fluorescence-activated cell sorting analysis was used to evaluate the cell cycle distribution and cell apoptosis. Immunohistochemistry was used to determine the expression of GGNBP2 in breast cancer tissues. We find that GGNBP2 expression decreases in TNBC tissues and is associated with the outcome of breast cancer patients. Furthermore, experimental overexpression of GGNBP2 in MDA-MB-231 and Cal51 cells suppresses cell proliferation, migration and invasion, reduces the cancer stem cell subpopulation, and promotes cell apoptosis in vitro as well as inhibits tumor growth in vivo. In these cell models, overexpression of GGNBP2 decreases the activation of IL-6/STAT3 signaling. Our data demonstrate that GGNBP2 suppresses cancer aggressiveness by inhibition of IL-6/STAT3 activation in TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call