Abstract

The electronic, thermoelectric, optical, and magnetic properties of the samarium aluminate (SmAlO3) compound is studied using the spin-polarized full-potential linearized augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange and correlation potential is treated with the generalized gradient approximation (GGA) and the Coulomb repulsion ([Formula: see text] Ry) has been calculated theoretically and was used for the GGA[Formula: see text] based approximated electronic structures. Additionally, the modified Becke–Johnson (mBJ) potential was also utilized along with the GGA[Formula: see text] approach for the calculation of the band gap. On the other hand, the optical properties were analyzed with the mBJ[Formula: see text] results and the thermoelectric properties were explained on the basis of the electronic structures and density of states (DOS) with a thermoelectric efficiency of 0.66 at 300 K. The minimum reflectivity at 1.13 eV (which was equal to 1.097 [Formula: see text]m) was found to be in agreement with the experimental results. Further refinements in the electronic structures were obtained by adding the spin–orbit coupling (SOC) interactions to the GGA[Formula: see text] approach, which was then combined with the mBJ approximations. Hence, a conclusion using the combined mBJ[Formula: see text]SOC study indicates that the SmAlO3 compound is a potential candidate for both thermoelectric as well as magnetic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call