Abstract
First principles investigation of PbTiO3 in bulk and layer phases has been performed using full potential-linear augmented plane wave method (FP-LAPW) implemented in WIEN2K code, based on the density functional theory (DFT) within the generalized gradient approximation (GGA) to explore the structural, electronic, thermoelectric and optical properties of PbTiO3. Total energy calculations, optimized structure, band structure, density-of-states (DoS), optical, and thermoelectric properties are computed and analyzed. The change in structural and electronic phases are observed. The optical properties of the compound can be studied by evaluating from the optical spectra and the changes in the properties such as complex dielectric function, absorption, energy loss function, refractive index and refractivity are studied. The thermoelectric properties are analyzed from Seebeck coefficient, power factor and thermoelectric figure of merit. The superior phase of PbTiO3 is analyzed from the observation of all the above-mentioned properties for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.