Abstract
Polarization of early embryos along cell contact patterns—referred to in this paper as radial polarization—provides a foundation for the initial cell fate decisions and morphogenetic movements of embryogenesis. Although polarity can be established through distinct upstream mechanisms in Caenorhabditis elegans, Xenopus laevis, and mouse embryos, in each species, it results in the restriction of PAR polarity proteins to contact-free surfaces of blastomeres. In turn, PAR proteins influence cell fates by affecting signaling pathways, such as Hippo and Wnt, and regulate morphogenetic movements by directing cytoskeletal asymmetries.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have