Abstract

POLYMER SCIENCE Shape-memory metal alloys, which can be restored to an original or “remembered” shape after deformation, have found uses in the medical industry. Lendlein et al. have now extended shape memory to polymers—in this case, a family of oligo(η-caprolactone) dimethacrylate/ n -butyl acrylate networks. The memory effect is obtained by connecting a crystallizable segment [the oligo(η-caprolactone)] that can form a temporary physical network to a component (the n -butyl acrylate) that can soften the network and improve the strain recovery. These materials possess application advantages over their metal counterparts in that they can be programmed at 70°C and can tolerate significantly larger deformations. The polymers can be tailored to specific shape transition temperatures and deformation characteristics by changing the proportions of the network components. The biocompatibility of the two components should allow these materials to find use in the biomedical sector. — MSL Proc. Natl. Acad. Sci. U.S.A. 98 , 842 (2001).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.