Abstract

ObjectiveGestural interfaces allow accessing and manipulating Electronic Medical Records (EMR) in hospitals while keeping a complete sterile environment. Particularly, in the Operating Room (OR), these interfaces enable surgeons to browse Picture Archiving and Communication System (PACS) without the need of delegating functions to the surgical staff. Existing gesture based medical interfaces rely on a suboptimal and an arbitrary small set of gestures that are mapped to a few commands available in PACS software. The objective of this work is to discuss a method to determine the most suitable set of gestures based on surgeon’s acceptability. To achieve this goal, the paper introduces two key innovations: (a) a novel methodology to incorporate gestures’ semantic properties into the agreement analysis, and (b) a new agreement metric to determine the most suitable gesture set for a PACS.Materials and methodsThree neurosurgical diagnostic tasks were conducted by nine neurosurgeons. The set of commands and gesture lexicons were determined using a Wizard of Oz paradigm. The gestures were decomposed into a set of 55 semantic properties based on the motion trajectory, orientation and pose of the surgeons’ hands and their ground truth values were manually annotated. Finally, a new agreement metric was developed, using the known Jaccard similarity to measure consensus between users over a gesture set.ResultsA set of 34 PACS commands were found to be a sufficient number of actions for PACS manipulation. In addition, it was found that there is a level of agreement of 0.29 among the surgeons over the gestures found. Two statistical tests including paired t-test and Mann Whitney Wilcoxon test were conducted between the proposed metric and the traditional agreement metric. It was found that the agreement values computed using the former metric are significantly higher (p < 0.001) for both tests.ConclusionsThis study reveals that the level of agreement among surgeons over the best gestures for PACS operation is higher than the previously reported metric (0.29 vs 0.13). This observation is based on the fact that the agreement focuses on main features of the gestures rather than the gestures themselves. The level of agreement is not very high, yet indicates a majority preference, and is better than using gestures based on authoritarian or arbitrary approaches. The methods described in this paper provide a guiding framework for the design of future gesture based PACS systems for the OR.

Highlights

  • With the introduction to Electronic Medical Records (EMR) and Electronic Health Records (EHR) into hospitals by the end of the nineties [1,2,3,4], the traditional human-computer interfaces (HCI) paradigm, became the standard by default

  • A set of 34 Picture Archiving and Communication System (PACS) commands were found to be a sufficient number of actions for PACS manipulation

  • This study reveals that the level of agreement among surgeons over the best gestures for PACS operation is higher than the previously reported metric (0.29 vs 0.13)

Read more

Summary

Objective

Gestural interfaces allow accessing and manipulating Electronic Medical Records (EMR) in hospitals while keeping a complete sterile environment. In the Operating Room (OR), these interfaces enable surgeons to browse Picture Archiving and Communication System (PACS) without the need of delegating functions to the surgical staff. Existing gesture based medical interfaces rely on a suboptimal and an arbitrary small set of gestures that are mapped to a few commands available in PACS software. The objective of this work is to discuss a method to determine the most suitable set of gestures based on surgeon’s acceptability. To achieve this goal, the paper introduces two key innovations: (a) a novel methodology to incorporate gestures’ semantic properties into the agreement analysis, and (b) a new agreement metric to determine the most suitable gesture set for a PACS. Data Availability Statement: The full gestural data collected from the surgeons is available from the GitHub repository: https://github.com/glebysg/ gestural_PACS

Materials and methods
Results
Conclusions
Introduction
Background
Methodology
Participants
Shifts 1
Results and discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.