Abstract

A diamond-like carbon thin film was deposited on the outer face of the germanium (Ge) window to protect the infrared lenses from a harsh environment in automotive application. Infrared transmittance and residual stress of a tetrahedral amorphous carbon (ta-C) thin film by a filtered cathodic vacuum arc (FCVA) source were investigated to increase the lifetime of a Ge window. They were found to have a trade-off relation about the change of the substrate pulse voltage. By introducing methane gas in FCVA deposition process, a hydrogenated ta-C (ta-C:H) thin film of which both IR transmittance and residual stress was improved could be obtained. A Ge window coated with ta-C:H thin film with 1.43 μm thickness showed anti-reflective effect in long-wave infrared. The hardness of ta-C:H thin film on Ge window was higher than 30 GPa. Adhesion, severe abrasion, temperature, humidity and salt solubility tests were carried out in accordance with MIL-C-48497A.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call