Abstract

Geothermal gradients and present day heat flow values were evaluated for about seventy one wells in parts of the eastern Niger delta, using reservoir and corrected bottom–hole temperatures data and other data collected from the wells. The results showed that the geothermal gradients in the shallow/continental sections in the Niger delta vary between 10 - 18° C/km onshore, increasing to about 24° C/km seawards, southwards and eastwards. In the deeper (marine/paralic) section, geothermal gradients vary between 18 - 45° C/km. Heat flow values computed using Petromod 1–D modeling software and calibrated against corrected BHT and reservoir temperatures suggests that heat flow variations in this part of the Niger delta range from 29–55 mW/m2 (0.69–1.31 HFU) with an average value of 42.5 mW/m2 (1.00 HFU). Heat flow variations in the eastern Niger delta correspond closely to variations in geothermal gradients. Geothermal gradients increase eastwards, northwards and seawards from the coastal swamp. Vertically, thermal gradients in the Niger delta show a continuous and non-linear relationship with depth, increasing with diminishing sand percentages. As sand percentages decrease eastwards and seawards, thermal gradient increases. Lower heat flow values (< 40 mW/m2) occur in the western and north central parts of the study area. Higher heat flow values (40 - 55 mW/m2) occur in the eastern and northwestern parts of the study area. A significant regional trend of eastward increase in heat flow is observed in the area. Other regional heat flow trends includes; an eastwards and westwards increase in heat flow from the central parts of the central swamp and an increase in heat flow from the western parts of the coastal swamp to the shallow offshore. Vertical and lateral variations in thermal gradients and heat flow values in parts of the eastern Niger delta are influenced by certain mechanisms and geological factors which include lithological variations, variations in basement heat flow, temporal changes in thermal gradients and heat flow, related to thicker sedmentary sequence, prior to erosion and evidenced by unconformities, fluid redistribution by migration of fluids and different scales of fluid migration in the sub-surface and overpressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.