Abstract

Alexandria is one of the Mediterranean UNESCO World Heritage sites at risk from coastal flooding and erosion due to sea-level rise. The city’s position on the Mediterranean coast means it is especially vulnerable to rising sea levels. Alexandria is one of UNESCO sites in Egypt at risk from flooding. All the archaeological sites in the northern coast of Egypt are also said to be at risk from coastal erosion. The flood risk in Alexandria is expected to reach a tipping point by 2050. This research presents the numerical analysis of geotechnical and structural damage mechanism of Catacombs of Kom El-Shoqafa and El-Shatbi Necropolis; the sites have the lowest topography in Alexandria induced by the sea level rise and heavy rain due to the Climate Change, based on Finite Element PLAXIS Code. The purpose of the study was to investigate the behavior fully-saturated soft rock/ hard soil subjected to ground water intrusions. The main objective of this study is to very accurately record and analyze geotechnical problems and induced structural failure mechanisms that have been observed and accounted for in field, experimental and Numerical studies. The land area is also vulnerable to coastal flooding. It is widely expected that the numerical analysis of such geotechnical problems will contribute to the preservation of cultural heritage. The present research presents an attempt and experimental study to design a PLAXIS 2D FE model to simulate hard soil/hard rock problems, distortion and stress analysis of the complex structure of the catacombs. Plastic modeling or Mohr—Coulomb model was used in advanced soils during various stages of numerical analysis. Results are recorded and discussed regarding stress and volumetric behavior of soil/rocks. Groundwater infiltration into pores or fissures of rock and soil has a great influence on the engineering mechanical properties of rocks and soils.

Highlights

  • According to the United Nations Office for Disaster Risk Reduction, during the 1998–2017 period, 5.3% of all global disasters originated from high temperatures, whereas droughts caused 4.8%, severe storms 28.2%, and hurricanes 43.4%

  • 2014 report by the Intergovernmental Panel on Climate Change (IPCC) clearly states that "Changes in many extreme weather and climate events have been observed since about 1950. Some of these changes have been linked to human influences, including a decrease in cold temperature extremes, an increase in warm temperature extremes, an increase in extreme high sea levels, and an increase in the number of heavy precipitation events in a number of regions" [1]

  • The IPCC believes that the influences of climate change will not be uniform across the globe but will rather vary among regions and that average global temperatures are expected to increase between

Read more

Summary

Introduction

According to the United Nations Office for Disaster Risk Reduction, during the 1998–2017 period, 5.3% of all global disasters originated from high temperatures, whereas droughts caused 4.8%, severe storms 28.2%, and hurricanes 43.4%.1 In other words, 82% of natural disasters during this period were climate related. The. 2014 report by the Intergovernmental Panel on Climate Change (IPCC) clearly states that "Changes in many extreme weather and climate events have been observed since about 1950. 2014 report by the Intergovernmental Panel on Climate Change (IPCC) clearly states that "Changes in many extreme weather and climate events have been observed since about 1950 Some of these changes have been linked to human influences, including a decrease in cold temperature extremes, an increase in warm temperature extremes, an increase in extreme high sea levels, and an increase in the number of heavy precipitation events in a number of regions" [1]. The IPCC believes that the influences of climate change will not be uniform across the globe but will rather vary among regions and that average global temperatures are expected to increase between.

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call