Abstract

AbstractA shallow mesoscale anticyclonic eddy, observed south of the Canary Islands with satellite altimetry, has been intensively studied with multiparametric sampling. Hydrographic data from a CTD installed on an undulating Nu‐shuttle platform reveal the presence of a mesoscale anticyclonic eddy of ∼125 km diameter. The difference in sea level anomaly (SLA) between the interior and the edge of the eddy, as determined from altimetry, is ∼15 cm, which compares well with the maximum dynamic height differences as inferred using a very shallow reference level (130 m). Further, the associated surface geostrophic velocities, of about 35 cm s−1 in the northeast and southwest edges of the eddy, are in good agreement with direct velocity measurements from the ship. Deep rosette‐CTD casts confirm that the structure is a shallow eddy extending no deeper than 250 m before the fusion with another anticyclone. The SLA‐tendency (temporal rate of change of sea surface height) indicates a clear northwestward migration during the two first weeks of November 2008. Applying an eddy SSH‐based tracker, the eddy's velocity propagation is estimated as 4 km d−1. Use of the QG‐Omega equation diagnoses maximum downward/upward velocities of about ±2 m d−1. The instability of the Canary coastal jet appears to be the mechanism responsible for the generation of the shallow anticyclonic eddy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.