Abstract
AbstractThe objective of this paper is the comparison of two kriging methods, ordinary kriging and kriging within strata, for calculation of digital elevation models (DEMs) from radar altimeter data, and application to the Lambert Glacier/Amery Ice Shelf system, East Antarctica. Two new DEMs are presented. First, a DEM of the Lambert Glacier/Amery Ice Shelf system is calculated from 1997 European Remote-sensing Satellite-2 (ERS-2) radar altimeter (RA) data using geostatistical interpolation. RA data have high along-track density, but gaps between tracks are several kilometers, depending on the observation mode; this requires interpolation. Because the ice-stream/ice-shelf system is of primary interest in glaciological investigations, in the first approach a variogram characteristic of the Lambert Glacier ice surface is used. The resultant map has low errors for the glacier and the ice shelf. To match the surface characteristics of different morphological units that constitute the Lambert Glacier/Amery Ice Shelf region, a second DEM is constructed as follows: We utilize RADARSAT synthetic aperture radar (SAR) data that were collected in 1997 during the first Antarctic Imaging Campaign and composed into a 125m backscatter-data mosaic by Jezek (1999) and we co-reference the 125m mosaic with the altimetry-derived DEM. The Lambert Glacier/Amery Ice Shelf area is then subdivided into several regions which are homogeneous with respect to characteristic surface-morphological properties identified in the SAR mosaic. For those regions, a problem-oriented complex kriging method known as kriging within strata is performed, and the resulting DEM is compared to the DEM that was derived from kriging without regional subdivision.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have