Abstract

The Sinai Peninsula constitutes an important district of the Egyptian lands where it forms a triangular portion in northeastern Egypt. The southern Sinai metamorphic complexes are the northern uppermost part of the Arabian–Nubian Shield revealing the upper and middle crust from the East African Orogeny, in which they tectonically evolved. The Feiran–Solaf metamorphic complex (FSMC) of Sinai, Egypt is one of the highest grades metamorphic complexes of a series of basement domes that trends NW and crops out throughout the Arabian–Nubian Shield. The main aim of the present study is to apply the geospatial technology and to represent the capability of the geospatial technology to estimate the combined influence of lithology and structure studies, and to construct the lithological and structural maps of FSMC. Furthermore, detailed structural analysis is carried out to reveal the different ductile and brittle deformational events and proposed the tectonic evolutionary model for the study area. Mainly geospatial technology and structural analysis software have been used to go well with the aim of the present study. Developing specific image processing of satellite images and structural analysis were succeeded to discriminate the various lithological rock units, and the geological structural features of the FSMC, using geographic information system tools to construct the different thematic maps, were extracted. The present detailed investigations of the enhanced satellite images, structural analysis, and field verification reveal that the FSMC reached its present tectonic setting through more than four deformational phases concluding that the Pan-African Najd Fault System continued in Sinai and was reactivated during Red Sea tectonics as indicated by the dextral shear zone (Rihba) bordering the northern side of the FSMC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call