Abstract

The largest ultra-high pressure metamorphic (UHPM) belt in the world is located along the Dabie–Sulu region, which tectonically belongs to the east part of the central orogenic belt of China. Integrated geophysical investigations of using deep seismic reflection, MT, and geothermal observations have been carried out in the Sulu area since 1997. The results of integrated interpretation suggest the existence of three features: (1) a rift beneath the Lianshui basin by the Jiashan–Xionshui fault; (2) a special crustal pattern, called the magmatic multi-arch structure occurs beneath the northern Sulu UHPM zone; and (3) a northwest-dipping regional thrust crosses the Sulu crust, representing the intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belts after collision between the Yangtze and Sino-Korean cratons. A magmatic multi-arch structure consists of some arched reflectors that occur in both the lower and the upper crust where arched reflectors coincide with granitoid plutons. The multi-arch structures are common in eastern China where many Mesozoic granitoid plutons of different scales occur. The crustal structures in the Sulu metamorphic belts resulted from intensive dynamic processes following the Triassic collision between the Yangtze and Sino-Korean cratons. The formation and exhumation of UHPM rocks followed the collision, and then intracontinental subduction of the Yangtze craton beneath the Dabie–Sulu terranes took place in the early and middle Jurassic. In the late Jurassic, the Sulu lithosphere turned to an extensional regime, large-scale granitic intrusions occurred in eastern China; these likely resulted from lithospheric thinning and asthenospheric uplifting. The granitic intrusions came to a climax during the Cretaceous and were followed by rifting along existing faults in the early Eogene, resulting in many petroleum basins. The granitoid emplacement that generated the magmatic multi-arch structure and the rift were consequences of the lithospheric thinning process, and deep intracontinental subduction of the Yangtze craton beneath the Sulu metamorphic belt might partially contribute to the lithospheric thinning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call