Abstract

Axial flow cyclones are widely used to separate gas-particle mixtures in many industrial applications. This study aims to optimize the axial cyclone pressure drop, removal rate, and sound levels. Single and multi-objective optimizations using a surrogate model were used to minimize the Euler number, Stokes number, and overall sound pressure level (OASPL). A radial basis function artificial neural network approach was also applied to generate more reliable data. The performed three single-objective genetic algorithms optimization studies led to the minimized Euler, Stokes, and OASPL numbers values of 5.082, 0.333, and 3.607, respectively. Then, the multi-objective NSGA-II optimization technique was used to generate a Pareto front that decision-makers can use for optimal performance. It was found that the concave guide vane, the guide vane revolution, and swirler geometry significantly affect the performance of axial cyclones. The low values of acoustic noise were recorded at low tangential and axial velocities values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.