Abstract

Abstract Beginning with the state of art around 1953, solutions of the Levi problem on complex manifolds will be recalled at first up to Takayama’s result in 1998. Then, the activity of extending the results by the L 2 {L}^{2} method in these decades will be reported. The method is by exploiting the finite dimensionality of certain L 2 {L}^{2} ∂ ¯ \bar{\partial } -cohomology groups to prove that a Hermitian holomorphic line bundle L L over a complex manifold M M is bimeromorphically equivalent to an ample bundle when it is restricted to a bounded locally pseudoconvex domain Ω ⋐ M \Omega \hspace{0.15em}\Subset \hspace{0.15em}M under the positivity of L ∣ ∂ Ω {L| }_{\partial \Omega } and the regularity of ∂ Ω \partial \Omega .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.