Abstract

Geometry has been identified as a cognitive domain where deaf individuals exhibit relative strength, yet the neural mechanisms underlying geometry processing in this population remain poorly understood. This fMRI study aimed to investigate the neural correlates of geometry processing in deaf and hearing individuals. Twenty-two adult deaf signers and 25 hearing non-signers completed a geometry decision task. We found no group differences in performance, while there were some differences in parietal activation. As expected, the posterior superior parietal lobule (SPL) was recruited for both groups. The anterior SPL was significantly more activated in the deaf group, and the inferior parietal lobule was significantly more deactivated in the hearing group. In conclusion, despite similar performance across groups, there were differences in the recruitment of parietal regions. These differences may reflect inherent differences in brain organization due to different early sensory and linguistic experiences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call