Abstract

A series of rheological experiments was performed for a polypropylene (PP) melt to explore its elongation behavior through a capillary die. Using an advanced twin-bore capillary rheometer with dies measuring 1.0, 0.5, and 0.25 mm in diameter, the experiments were performed at 210, 220, and 230 °C. The results indicated that the temperature of the PP melt had a significant effect on its extensional viscosity. The different decreases in the extensional viscosity values in the tested dies revealed the geometry dependence of the extensional viscosity. In the case of PP in the 0.25 mm die at 210 °C, the extensional viscosity values under different extensional strain rates were much higher than those in the other dies. Only in the 1.0 mm die did the relationship between the extensional viscosity of PP and its temperature obey the Arrhenius equation due to the larger die size which related to a slight size effect on its elongation behavior. The calculated deviations of the extensional viscosity in the tested dies demonstrated that the increasing pressure applied to the PP melt in the micro channel was related to the geometry dependence of the elongation behavior of the PP melt. The change in the extensional viscosity eventually relied on the interaction of the die geometry, the temperature, and the extensional stress of the PP melt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call