Abstract

In this paper, the geometry dependence of the temperature coefficient of resonant frequency (TCRF) is investigated and compared with a theoretical thermal stress change using Si mechanical microresonators. The used resonators have Y, T, I (conventional double-supported type) and arrow shapes, and in each shape the resonant frequency change of the resonator is measured in relation to changes in the amount of heat input to the resonator. The change trend in the experimental resonant frequency and the theoretical thermal stress in changing the temperature are consist. The TCRF in each resonator is Y: −653, T: −162, I: −417, and the arrow is 174 ppm/K. These absolute values are much higher than those of conventional cantilevered Si resonators (−34.9 ppm/K). In addition, the frequency fluctuations based on Allan deviation are experimentally evaluated considering the theoretical thermal fluctuation noise. It is considered that use of this technique to improve the TCRF of resonators by changing the geometry has the possibility of creating a sensor with highly sensitive thermal detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.