Abstract

Several quartz vein sets with varying orientation, geometry and internal structure were recognized in the Atalla area. The veins were associated with the deformation phases affecting the area. En echelon and extensional veins are the main geometrical types. Syn-kinematic veins associated with the major northeast-over-southwest thrust faults were later boudinaged, folded and re-folded. En echelon veins, fibrous veins, and extensional veins are associated with the NNW–SSE faults. Other veins are associated with the NW–SE, N–S, NE–SW and E–W faults. Veins are concentrated at the intersection zones between faults. The internal structure of the veins comprises syntaxial, antitaxial, and composite types and reflects a change from a compressive stress regime to an extensional one. Chocolate-tablet structures and synchronous and co-genetic vein networks indicate later multi-directional extension of the area. Interaction between cracking and sealing of fractures is a common feature in the study area indicating that it was easy for the pore pressure to open pre-existing fractures instead of creating new ones. The reopening of pre-existing fractures rather than creating new ones is also indicated by the scattering of vein data around σ 3. There is an alteration and change in characteristics of the wall rock due to increase in fluid flow rate. Fault-valving probably is also a cause of the complex geometry of some veins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.