Abstract

The Mesozoic Xuefengshan Orogen (XFSO) in South China hosts abundant gold ore deposits. The XFSO records a history of polyphase tectonic deformation and the structural controls on gold mineralization are poorly understood. The recently discovered quartz-vein type Huanggou gold deposit in the southern XFSO is characterized by multiple stages of deformation and represents an excellent natural laboratory for deciphering structural controls on gold mineralization in a complex orogenic belt. A systematic structural analysis indicates that the geometry of the Huanggou gold deposit and adjacent areas mainly resulted from four stages of deformation: (1) D1 top-to-the-NW sense of shearing; (2) D2 SE-directed back-folding and back-thrusting; (3) D3 NW–SE upright folding; and (4) D4 NW–SE normal faulting and fracturing. Two sets of quartz veins are exposed in the deposit: (1) SE-dipping Au-bearing quartz veins; and (2) NW-dipping non-mineralized quartz veins. The SE-dipping Au-bearing quartz veins were likely formed by the main deformation phase of the XFSO. During D1 top-to-the-NW simple shearing, these synkinematic Au-bearing quartz veins progressively evolved into sigmoidal shapes and rotated to a preferred SE-dipping orientation. Subsequently, D2 SE-directed back-folding and back-thrusting resulted in the formation of synkinematic NW-dipping non-mineralized quartz veins. D3 upright folding locally steepened the dips of both Au-bearing and non-mineralized quartz veins. Our results may provide new insights into the structural controls of gold mineralization in the XFSO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call