Abstract

This paper deals with nonlinear free axisymmetric vibrations of functionally graded thin circular plates whose properties vary through its thickness. The inhomogeneity of the plate is characterized by a power law variation of the Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of non-linear algebraic equations, is solved numerically. The non-linear to linear frequency ratios are presented for various values of the volume fraction index n showing hardening type non-linearity. The distribution of the radial bending stress associated to the non-linear mode shape is also given for various vibration amplitudes, and is compared with those predicted by the linear theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call