Abstract
. This paper deals with nonlinear free axisymmetric vibrations of functionally graded thin circular plates (FGCP) whose properties vary through its thickness. The inhomogeneity of the plate is characterized by a power law variation of the Young’s modulus and mass density of the material along the thickness direction, whereas Poisson’s ratio is assumed to be constant. The theoretical model is based on Hamilton’s principle and spectral analysis using a basis of admissible Bessel’s functions to yield the frequencies of the circular plates under clamped boundary conditions on the basis of the classical plate theory. The large vibration amplitudes problem, reduced to a set of non-linear algebraic equations, is solved numerically. The non-linear to linear frequency ratios are presented. Then, explicit analytical solutions are presented, based on the semi-analytical model previously developed by EL Kadiri et al. [1-2] for beams and rectangular plates, which allow direct and easy calculation for the first non-linear axisymmetric mode shape, with their associated non-linear frequencies of FG circular plates and which are expected to be very useful in engineering applications and in further analytical developments. An excellent agreement is found with the results obtained by the iterative method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.