Abstract

Acoustical signals are often corrupted by other speeches, sources, and background noise. This makes it necessary to use some form of preprocessing so that signal processing systems such as a speech recognizer or machine diagnosis can be effectively employed. In this contribution, we introduce and evaluate a new algorithm that uses independent component analysis (ICA) with a geometrical constraint [constrained ICA (CICA)]. It is based on the fundamental similarity between an adaptive beamformer and blind source separation with ICA, and does not suffer the permutation problem of ICA-algorithms. Unlike conventional ICA algorithms, CICA needs prior knowledge about the rough direction of the target signal. However, it is more robust against an erroneous estimation of the target direction than adaptive beamformers: CICA converges to the right solution as long as its look direction is closer to the target signal than to the jammer signal. A high degree of robustness is very important since the geometrical prior of an adaptive beamformer is always roughly estimated in a reverberant environment, even when the look direction is precise. The effectiveness and robustness of the new algorithms is proven theoretically, and shown experimentally for three sources and three microphones with several sets of real-world data

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.