Abstract
Random acceleration is a fundamental stochastic process encountered in many applications. In the one-dimensional version of the process a particle is randomly accelerated according to the Langevin equationx[over ̈](t)=sqrt[2D]ξ(t), where x(t) is the particle's coordinate, ξ(t) is Gaussian white noise with zero mean, and D is the particle velocity diffusion constant. Here, we evaluate the A→0 tail of the distribution P_{n}(A|L) of the functional I[x(t)]=∫_{0}^{T}x^{n}(t)dt=A, where T is the first-passage time of the particle from a specified point x=L to the origin, and n≥0. We employ the optimal fluctuation method akin to geometrical optics. Its crucial element is determination of the optimal path-the most probable realization of the random acceleration process x(t), conditioned on specified A,n, and L. The optimal path dominates the A→0 tail of P_{n}(A|L). We show that this tail has a universal essential singularity, P_{n}(A→0|L)∼exp(-α_{n}L^{3n+2}/DA^{3}), where α_{n} is an n-dependent number which we calculate analytically for n=0, 1, and 2 and numerically for other n. For n=0 our result agrees with the asymptotic of the previously found first-passage time distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.