Abstract

Epitaxial heterostructures composed of complex oxides have fascinated researchers for over a decade as they offer multiple degrees of freedom to unveil emergent many-body phenomena often unattainable in bulk. Recently, apart from stabilizing such artificial structures along the conventional [001]-direction, tuning the growth direction along unconventional crystallographic axes has been highlighted as a promising route to realize novel quantum many-body phases. Here we illustrate this rapidly developing field of geometrical lattice engineering with the emphasis on a few prototypical examples of the recent experimental efforts to design complex oxide heterostructures along the (111) orientation for quantum phase discovery and potential applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call