Abstract
A quasicrystal built with three types of tiles is related to the well-known octagonal tiling. The relationships between both tilings are investigated. More precisely, we show that the coordinates of the vertices can be obtained in two different but equivalent ways. The structure factor is calculated exactly. We emphazise the difficulty one can have to define the order of the symmetry of a quasicrystal, from a practical point of view, exhibiting a quasiperiodic tiling whose spectrum has a «quasi» eight-fold symmetry. Finally, we show how to recover easily a class of octagonal-like quasicrystals Au moyen de trois tuiles, nous construisons un pavage quasiperiodique du plan, que nous relions au quasicristal octogonal. Ainsi, nous montrons que les coordonnees des nœuds peuvent etre obtenues de deux manieres differentes. Le facteur de structure est calcule exactement. Ce pavage qui possede «presque» une symetrie d'ordre huit, souleve la difficulte de la determination pratique de la symetrie d'un quasicristal. Finalement, nous montrons comment construire une large classe de pavage du type de l'octogonal, a partir de ce nouveau pavage
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.