Abstract

Abstract Using the density functional theory combined with the effective screening medium method, we investigated the energetics and electronic properties of bilayer graphene, comprising graphene layers without and with tensile strain. An interlayer interaction does not affect the structural reconstruction of each graphene layer despite the bilayer structure possessing a Moire superlattice. The structural asymmetry between the graphene layers causes a potential difference across the layers, leading to electron and hole doping in the layers without and with the tensile strain. Accumulated carriers show unique lateral distribution in each graphene layer, which depends on the interlayer atomic arrangements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.