Abstract

The predictability of cycles in the series of Pythagorean triples led to an investigation that yielded numbers (x) that are associated with irrational square roots (√n). The cycles recur with geometric factors (cycle factors y) that are comprised of a positive integer x where y = x + √(x^2±1). On raising the cycle factors to the positive integer powers (ym), a series is generated where each consecutive member comes closer and closer to positive integers as the series progresses. A formula associates the square root (√n) with these series. Prime factorising the positive integers in the power series (xm) produces predictable patterns among the prime factors in the series. In general, power series that have each consecutive member in the series come closer to positive integers are limited to (x + √(x^2±r))m where x and r are positive integers and r < (x + 1)2 – x2 for the + r condition and r < x2 – (x – 1)2 for the – r condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call